<<12345>>
6.

 If   $[a\times b .b\times c. c\times a]=\lambda[abc]^{2}$  then λ  is equal to


A) 0

B) 1

C) 2

D) 3



7.

The image of the line   $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$    in the plane 2x-y+z+3=0 is the line


A) $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$

B) $\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$

C) $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$

D) $\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}$



8.

 The slope of the line touching both the parabola   $y^{2}=4x$    and $x^{2}=-32y$ is 


A) $\frac{1}{2}$

B) $\frac{3}{2}$

C) $\frac{1}{8}$

D) $\frac{2}{3}$



9.

 Let C be the circle with centre at (1,1) and radius 1. If T is the circle centred at (0,y)  passing through the origin and touching the circle C externally, then the radius of T is equal to 


A) $\frac{\sqrt{3}}{\sqrt{2}}$

B) $\frac{\sqrt{3}}{2}$

C) $\frac{1}{2}$

D) $\frac{1}{4}$



10.

 The locus of the foot of perpendicular drawn from the centre of the ellipse    $x^{2}+3y^{2}=6 $ on any tangent to it is


A) $(x^{2}-y^{2})^{2}=6x^{2}+2y^{2}$

B) $(x^{2}-y^{2})^{2}=6x^{2}-2y^{2}$

C) $(x^{2}+y^{2})^{2}=6x^{2}+2y^{2}$

D) $(x^{2}+y^{2})^{2}=6x^{2}-2y^{2}$



<<12345>>